skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rafiee, Zahra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. This study introduces a groundbreaking point-of-care (POC) system designed for antibiotic susceptibility testing (AST). At the heart of this innovation is the organic electrochemical transistor, a device that significantly amplifies the electrical signals arising from the redox activities and extracellular electron transfers of pathogens when exposed to antibiotics. This process involves electroactive reactions that either dope or de-dope the transistor's channel, leading to substantial changes in the current flow between the source and drain terminals. Furthermore, our system features an innovative integration with a paper substrate. This design decision significantly simplifies the handling of liquid bacterial cultures, making the process more straightforward and efficient. We have rigorously tested our sensing system using three well-known pathogens: Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, exposing them to leading antibiotics to validate the system's effectiveness. 
    more » « less
  3. This study presents a novel, simple method for biofilm cultivation and a combined electrical-electrochemical technique to efficiently gauge antibiotic effectiveness against biofilm-related infections. 
    more » « less
  4. This work develops an all-electrical, reliable, rapid antibiotic susceptibility testing device to monitor antibiotic efficacy in bacterial biofilms that can be practically translatable to clinical settings and industrial antibiotic developments. 
    more » « less
  5. We report an ingestible, millimeter-sized microbial fuel cell (MFC) capsule that can provide a realistic and practical power solution for ingestible electronics. The capsule integrates a pH-sensitive enteric membrane, a germinant-containing layer, and a microfluidic hydrogel-based anodic channel pre-inoculated with Bacillus subtilis spores as dormant biocatalysts, which are directly connected to an integrated MFC. When the pH-sensitive membrane dissolves in a designated gut location with a specific pH, the hydrophilic hydrogel in the anodic channel absorb the gut fluids washing the germinant to trigger the spore germination and generate microbial metabolic electricity in our world’s smallest MFC. When the capsule is designed to work in the human intestine, it generates electricity only in the neutral pH solution achieving maximum power and current densities of 64μW/cm2 and 435 μA/cm2, respectively, which are substantially higher than the other energy harvesting techniques. 
    more » « less
  6. We create a simple, rapid, equipment-free papertronic sensor array that is connected to a visual readout, allowing the naked eye to access antibiotic effectiveness against pathogenic bacteria, Pseudomonas aeruginosa PA01. The sensing approach quickly monitors microbial bioelectricity which is based on their metabolic activities and is inversely proportional to the concentration of antibiotics. Each sensing system consists of a two-electrode microbial sensing unit, an interface circuit for sensor signal amplification, and an electronic visual display with a light-emitting diode (LED), which are all mounted onto a paper-based printed circuit board. The bioelectricity in the sensing unit is amplified by the transistor and is transduced into LED illumination when a pre-defined electric current corresponding to a bacterial sample with a certain antibiotic concentration is obtained. Only within an hour, the system generates reliable, discrete visual responses to monitor antibiotic efficacy and provides the right doses for treatment against bacterial infections. 
    more » « less
  7. Abstract Papertronics introduce a sustainable, cost‐effective revolution in electronics, especially for the Internet of Things. This research overcomes the traditional challenges of paper's porosity, which has impeded electronic component fabrication and performance. A novel approach that harnesses paper's natural capillary action, combined with hydrophobic wax patterning, to achieve precise vertical integration of electronic components is introduced. This method marks a significant departure from conventional surface deposition techniques. This study demonstrates the successful creation of tunable resistors, capacitors, and field‐effect transistors, embedded within a single sheet of paper. Contrary to previous assumptions that impeded the use of paper, its rough and porous texture as a strategic advantage, facilitating the precise fabrication of intricate electronic components is leveraged. Machine learning algorithms play an important role in predicting and enhancing the performance of these papertronic components. This innovation facilitates the development of compact printed circuit boards with increased circuit density, enabling the integration of diverse analog and digital circuits in either single or multi‐layer paper formats. The resulting papertronic systems exceed performance benchmarks, offering eco‐friendly disposal through biodegradability or incineration. These breakthroughs establish papertronics as a feasible, eco‐friendly alternative in the electronics industry, permitting widespread adoption and continuous innovation in sustainable electronic solutions. 
    more » « less